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Abstract
We comment on a recent letter by de Albuquerque and Leite (2001 J. Phys. A:
Math. Gen. 34 L327), in which results to the second order in ε = 4 − d + m

2
were presented for the critical exponents νL2, ηL2 and γ L2 of d-dimensional
systems at m-axial Lifshitz points. We point out that their results are at variance
with ours. The discrepancy is due to their incorrect computation of momentum-
space integrals. Their speculation that the field-theoretic renormalization group
approach, if performed in position space, might give results different from when
it is performed in momentum space is refuted.

PACS numbers: 05.20.−y, 11.10.Kk, 64.60.Ak, 64.60.Fr

In a recent letter [1] de Albuquerque and Leite (AL) presented results to the second order in
ε = 4 − d + m

2 for the critical exponents νL2, ηL2 and γ L2 of d-dimensional systems at m-axial
Lifshitz points. For the special case m = 1 of a uniaxial Lifshitz point, these results were
previously given in a (so far apparently unpublished) preprint [2]. The ε2 terms AL found are
at variance with ours [3, 4].

As an explanation for these discrepancies AL suggest the following. Both we as well
as AL employed a field-theoretic renormalization group approach based on dimensional
regularization. To compute the residues of the ultraviolet (UV) poles at ε = 0, we found
it convenient to perform (part of) the calculation in position space. By contrast, AL worked
entirely in momentum space. They speculate [1] ‘that calculations performed in momentum
space and coordinate space are inequivalent, as far as the Lifshitz critical behaviour is
concerned’.

This speculation is untenable and a serious misconception, a fact which should be obvious
not only to readers with a background in field theory. The reason simply is: at each step of
the calculation one can transform from momentum space to position space and vice versa.

To become more specific, consider an N-point vertex function �(N)(x1, . . . , xN) of a
dimensionally regularized, translationally invariant, renormalizable Euclidean field theory,
such as the |φ|4 theory for an m-axial Lifshitz point considered both by us [3, 4] and AL. In
momentum space the vertex functions have the form

�̃(N)(q1, . . . , qN) (2π)
d δ

(
N∑
i=1

qi

)
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where �̃(N) are conventional functions of N−1 independent momenta, e.g., q1, . . . , qN−1. �̃(N)

also depend on ε (i.e. on d): they are meromorphic in ε, having UV poles at ε = 0. Since the
issue is the ε expansion, these are the only poles we have to consider; possible other UV poles
at special values ε > 0 need not concern us here. Likewise, we do not have to worry about
possible infrared poles one encounters in perturbation expansions about the Lifshitz point for
a fixed space dimension d, nor embark on a discussion of related subtle questions such as the
appearance of perturbatively non-accessible mass shifts meromorphic in ε and on how these
problems are avoided in massive, fixed-d renormalization schemes.

The Fourier back-transforms of the functions �̃(N) define generalized functions
(distributions), which depend on theN−1 difference variables xj1 ≡ xj −x1, 1 � j � N−1.
The same applies to each individual Feynman integral contributing to �(N).

Field-theoretical renormalization group approaches such as the ones on which AL’s work
and ours are based hinge on the possibility of introducing a well-defined renormalized theory
by absorbing the UV singularities of the theory’s primitively divergent vertex functions in
a consistent manner through counter-terms that are local in position space. In order that
the renormalization procedure can be interpreted as a re-parametrization, these counter-terms
must have the form of the (local) interactions appearing in the original Hamiltonian, except
for a finite number of admissible additive ones. Well-known mathematical renormalization
theorems [5, 6] ensure that this is the case, order by order in perturbation theory.

Central to the proofs of such renormalization theorems is the observation that the primitive
UV singularities have a local structure in position space. It is precisely this property that is
crucial for the renormalizability of the theory. It ensures that the counter-terms, computed to
a given order of perturbation theory, provide the subtractions for all divergent subintegrations
of the Feynman graphs of the next higher order that are required to cancel all those UV
singularities that do not have the form of local counter-terms. Such non-local UV singularities
occur indeed: for instance, the graph has momentum-dependent pole terms ∼ε−1 (involving
logarithms of momenta). These are due to the divergent subintegral ; they do not have the
form of local counter-terms but cancel upon making the appropriate subtraction for this
subgraph. (This subtraction is produced by part of the one-loop counter-term ∝ φ4, see, e.g.,
section 3.B of [7].) Zimmermann’s forest formula [8] clarifies precisely which subtractions
have to be made for each individual Feynman graph. The locality of the counter-terms
manifests itself in the fact that in the final subtractions which must be made for superficially
divergent graphs the graph is shrunk to a point.

What we have just explained has been known for decades and can be found in standard
textbooks on field theory. It is true that for computational reasons many authors prefer the
momentum representation when explaining the renormalization procedure. Therefore, the
significance of the UV singularities’ local structure in position space may escape the reader’s
attention if not properly emphasized. However, a very clear exposition of the importance of
this locality has already been given in one of the earliest classic textbooks on renormalization
[9].

The renormalization procedure can be performed equally well in momentum or position
space. Utilizing dimensional regularization in conjunction with minimal subtraction of poles
is advantageous in that one does not have to worry about how the regularization scheme
and the conditions for fixing the counter-terms translate upon Fourier transformation: the
scheme can be applied equally well in the momentum or position representation. The upshot
of these considerations is that there is no way that AL’s and our calculation can both be
correct.

The source of the discrepancies between AL’s work and ours can be traced back to the
different results they find for the required two-loop integrals. For example, our result for the
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integral I3(p, k) defined in equation (3) of AL’s paper [1] reads

I3(p, k) = (2π)2d∗

ε

[
jσ (m) k

4

16m(m + 2)
− jφ(m) p

2

2 (8 −m)

]
+ O(ε0) (1)

with

jφ(m) = 210+m π6+ 3m
4 �(m2 )

�
(
2 − m

4

)
�2
(
m
4

)∫ ∞

0
dυ υm−1 �3(υ;m, d∗) (2)

where

�(υ;m, d∗) =
∫

dd
∗−mp

(2π)d∗−m

∫
dmk

(2π)m
ei(p·e+k·υ)

p2 + k4
(3)

is the scaling function associated with the free critical propagator in position space (cf.
equation (13) of [3]), at the upper critical dimension d∗ = 4 + m

2 . Here e is a unit d∗ − m

vector, while υ is an arbitrarily directed m-vector. The integral jσ (m) is similar to jφ(m),
except that its integrand has an additional factor υ4.

From AL’s equations (11) and (18), we can infer their result for I3(p, 0); it reads

I
(AL)
3 (p, 0) = −π4+ m

2
�2
(
m
4

)
�2
(
m
2

) 1

8 −m

p2

ε
+ O(ε0). (4)

To see that this cannot be correct, one must merely consider the isotropic case m = d = 8− ε:
for this, AL’s result (4) predicts a pole ∝ ε−2, even though the pole part ∝ p2 must vanish
because p has d − m = 0 components. By contrast, our result (1)–(3) does not violate
this condition since jφ(8) = 0. (See sections 4.5 and 4.4 of [4] where we verified that our
ε-expansion results for general values of m reduce to known ones in both isotropic cases m =
d and m = 0, respectively.)

AL realized the incorrectness of their findings for m = 8. Yet they seem to believe that
the ‘approximations’ they made in their computation of � � 2 loop integrals do not lead to
erroneous results. Details of their approximations are described in [2]. The crux of their
method is ‘to impose the constraint’ k1 = −2k2 on the momenta of the internal integral

I2( p1 + p, k1) =
∫

dd−mp2 dmk2(
p2

2 + k4
2

) [
( p1 + p2 + p)2 + (k1 + k2)4

] (5)

of

I3(p, 0) =
∫

dd−mp1 dmk1

p2
1 + k4

1

I2( p1 + p, k1). (6)

This amounts to modifying the momentum term (k1 + k2)
4 of the last propagator in equation (5)

to k4
2. The error this introduces is given by the analogue of the integral (6) one obtains through

replacement of I2( p1 + p, k1) by the corresponding difference δI2(·, k1) ≡ I2(·, k1)− I2(·, 0),
namely

δI2( p1 + p, k1) =
∫

dd−mp2 dmk2(
p2

2 + k4
2

) [
( p1 + p2 + p)2 + (k1 + k2)4

]
× k4

1 + 4
(
k2

1 + k2
2

)
k1 · k2 + 6 k2

1 k
2
2[

( p1 + p2 + p)2 + k4
2

] . (7)

Now the pole term ∝ p2/ε of I3 we are concerned with corresponds to a logarithmic UV
divergence ∼p2 ln� at the upper critical dimension (�= cut-off). In order for AL’s
approximation to be correct, δI2 must have no contributions that vary as p2 p−2

1 or p2 k−4
1
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as p1 ∼ k2
1 ∼ � → ∞. As can be seen for instance by power counting, this condition is

not satisfied. (Readers preferring more mathematical scrutiny might want to compute ∇2
p δI2

and study its behaviour for large p1 and k1.) Accordingly, AL’s approximation is unjustified
wheneverm �= 0. The same kind of approximations are employed by AL for other � � 2 loop
integrals.

In conclusion, let us outline how the pole term ∝p2/ε of I3 given in equation (6) can be
recovered via a momentum-space calculation. Using a Schwinger representation for each one
of the three propagators in equations (5) and (6) and performing the Gaussian integrations
over p1 and p2, we obtain

I3(p, 0) = πd−m
∫ ∞

0
dx
∫ ∞

0
dy
∫ ∞

0
dz (xy + yz + zx)−

d−m
2

×
∫

dmk1

∫
dmk2 exp

(
− xyzp2

xy + yz + zx
− x k4

1 − y k4
2 − z |k1 + k2|4

)
. (8)

Next, we make the variable transformations X = x/z, Y = y/z and K1,2 = z1/4k1,2, and take
the derivative −∂/∂p2

∣∣
p=1 inside the integrals. The integration over z can now be performed;

it produces the factor�(ε)(1+X−1 +Y−1)ε = 1/ε+O(ε0). Upon transforming to the variables
s = 1/X and t = 1/Y , one finds that

−∂I3(p, 0)

∂p2
= πd∗−m

ε

∫ ∞

0
ds
∫ ∞

0
dt (st)−

m
4 (1 + s + t)

m
4 −3

×
∫

dmK1

∫
dmK2 exp

(
−K4

1

s
− K4

2

t
− |K1 + K2|4

)
+ O(ε0). (9)

This is in conformity with equations (1)–(3). To see this, note that the integral jφ is proportional
to
∫

dmυ �3. In momentum space, this is a convolution of the form
∫

k1,k2
�̃k1�̃k2�̃−k1−k2 .

The Fourier transform �̃k can be read from equation (14) of [3]; it involves a modified Bessel
function Kν(k

2), for which we use the representation

k2ν Kν(k
2) = 2ν−1

∫ ∞

0
dx xν−1 e−x− k4

4x (10)

with integration variables x, y and z. Employing the transformations s = x/z, t = y/z and
K1,2 = z−1/4k1,2, we perform the integration over z. The result is the residue of the pole (9).

To summarize: AL’s results are incorrect because of their unacceptable approximations
made in computing the Feynman diagrams. Their speculation that the field-theoretic RG
approach might yield different results depending on whether it is performed in position or
momentum space does not hold.
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